Natural language processing can often require handling privacy-sensitive text. To avoid revealing confidential information, data owners and practitioners can use differential privacy, which provides a mathematically guaranteeable definition of privacy preservation. In this work, we explore the possibility of applying differential privacy to feature hashing. Feature hashing is a common technique for handling out-of-dictionary vocabulary, and for creating a lookup table to find feature weights in constant time. Traditionally, differential privacy involves adding noise to hide the true value of data points. We show that due to the finite nature of the output space when using feature hashing, a noiseless approach is also theoretically sound. This approach opens up the possibility of applying strong differential privacy protections to NLP models trained with feature hashing. Preliminary experiments show that even common words can be protected with (0.04, 10-5)-differential privacy, with only a minor reduction in model utility.
Read the PaperInterested in hearing more from Zuva?
Read more papers
Science
Variations in Assessor Agreement in Due Diligence
In legal due diligence, lawyers identify a variety of topic instances in a company’s contracts that may pose risk during a transaction. In this paper, we present a study of 9 lawyers conducting a simulated review of 50 contracts for five topics. We find that lawyers agree on the general location of relevant material at a higher rate than in other assessor agreement studies, but they do not entirely agree on the extent of the relevant material.
Science
The Utility of Context When Extracting Entities From Legal Documents
When reviewing documents for legal tasks such as Mergers and Acquisitions, granular information (such as start dates and exit clauses) need to be identified and extracted. Inspired by previous work in Named Entity Recognition (NER), we investigate how NER techniques can be leveraged to aid lawyers in this review process. Due to the extremely low prevalence of target information in legal documents, we find that the traditional approach of tagging all sentences in a document is inferior, in both effectiveness and data required to train and predict, to using a first-pass layer to identify sentences that are likely to contain the relevant information and then running the more traditional sentence-level sequence tagging.